# TRAVERSE NETWORK ADJUSTMENT PROGRAM <br> HAVOC 

Horizontal Adjustment by Variation Of Coordinates

These notes describe the operation of a MATLAB ${ }^{1}$ program Havoc that can be used to adjust traverse networks using the least squares method known as Variation of Coordinates. The theory relating to this topic (and a worked example) can be found in the paper A Review of Least Squares Theory Applied to Traverse Adjustment ${ }^{2}$ that is attached for your information.

The MATLAB program Havoc consists of the following ten $m$-files:

| decdeg.m | deg2dms.m | ellipse.m |
| :--- | :--- | :--- |
| Havoc.m | HavocPlot.m | join.m |
| readdata.m | resultt.m | solve.m |
| Status.m |  |  |

Havoc.m is the "main" program that calls the other functions listed above in the sequence:

```
Havoc
        readdata
        decdeg
        status
        solve
            join
        results
            deg2dms
            join
        HavocPlot
            ellipse
```

i.e., Havoc calls readdata (which calls decdeg) then status then solve (which calls join) then results (which calls deg2dms and join) then HavocPlot (which calls ellipse).

You should copy all the programs to their own directory before running Havoc.m from the MATLAB command window

[^0]Program Havoc requires an ASCII ${ }^{3}$ text data file that can be created in the MATLAB editor, Microsoft Notepad or Microsoft Word. The data file should be saved with a .txt extension, e.g., mydata.txt

The data file is in three parts, (i) coordinates of the fixed and floating stations, (ii) observations (directions followed by distances) and (iii) constraints. Comment lines, beginning with the $\%$ symbol can be included in the data file. The program will ignore these lines.

A line of data in the data file refers to either a station in the network (the first part of the data file), an observation (the second part of the data file) or a constraint (the last part of the data file). Each line of data can be considered as having five fields and each field must be separated by whitespace (or blanks). The first field of every line of data must contain a code that identifies the type of data that follows on the line. The codes are:

1 Fixed station
2 Floating station
3 Observed Direction
4 Observed Distance
5 Constrained Bearing
6 Constrained Distance
7 Constrained Angle
Subsequent fields on the line contain data depending on the code type
All stations in the network (and in the data file) must have a serial number (an integer) and no two stations can have the same number. Every observation (and constraint) in the network is defined by serial numbers of the stations involved in the observation (or constraint).

The following data file Survad.txt contains the data for the example traverse adjustment in Appendix B of A Review of Least Squares Theory Applied to Traverse Adjustment. Comments on the right-hand-side explain the layout of the data.

```
% Data file "SURVAD.TXT" for traverse adjustment program.
%
% Data is example in Appendix B of paper titled A REVIEW OF LEAST
% SQUARES THEORY APPLIED TO TRAVERSE ADJUSTMENT.
%
% Station Information
%
% Code serial East North
    1 1 500.000 500.000
    Note that in this section of the data
    2 2 7 724.36 417.20 file the 1st field is the code, the 2nd
    2 3 637.47 329.16 field is the serial number, the 3rd
    4 640.13 211.62 and 4th fields are coordinates and
```



[^1]

Program Havoc is run from the MATLAB command window by typing Havoc after the command prompt ">>". The program executes and the results are placed in an ASCII text file with the same path name as the data file but with the extension ". out". For the example in Appendix B of A Review of Least Squares Theory Applied to Traverse Adjustment the data file is survad.txt and the results are contained in the file survad.out The output file contains the adjusted coordinates of the floating stations and the adjusted observations (with residuals) as well as the estimate of the variance factor and the upper-triangular elements of the cofactor matrix (for precision estimation and computation of error ellipses). The program also displays a "Figure window" that shows a plot of the network with error ellipses drawn at the floating stations.
The output file for survad.txt is shown below

Program HAVOC: Horizontal Adjustment by Variation Of Coordinates
This file is D:\Projects $\backslash$ Adjust $\backslash H A V O C \backslash M a t l a b P r o g r a m \backslash S u r v a d . o u t ~$ generated from D: \Projects $\backslash$ Adjust $\backslash H A V O C \backslash M a t l a b P r o g r a m \backslash S u r v a d . t x t ~$

Fixed Stations:

| Serial | East | North |
| ---: | :--- | :--- |
| 1 | 500.000 | 500.000 |

Adjusted Stations:

| Serial | East | North |
| ---: | :--- | :--- |
| 2 | 724.356 | 417.206 |
| 3 | 637.455 | 329.152 |
| 4 | 640.114 | 211.607 |
| 5 | 492.713 | 229.253 |
| 6 | 500.479 | 379.827 |

Observed Directions:

| station |  | observation |  |  | st.dev sec | $\begin{gathered} \text { resid } \\ \text { sec } \end{gathered}$ | orient const plane brg |  |  |  |  |  | plane dist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| at | to | deg | min | sec |  |  | deg | min | sec | deg | min | sec |  |
| 1 | 2 | 0 | 0 | 0.00 | 10.00 | -4.13 | 110 | 15 | 24.13 | 110 | 15 | 20.00 | 239.145 |
| 1 | 6 | 69 | 30 | 50.00 | 10.00 | 4.13 |  |  |  | 179 | 46 | 18.27 | 120.174 |
| 2 | 1 | 0 | 0 | 0.00 | 10.00 | -13.49 | 290 | 15 | 33.49 | 290 | 15 | 20.00 | 239.145 |
| 2 | 4 | 272 | 0 | 50.00 | 10.00 | 27.54 |  |  |  | 202 | 16 | 51.02 | 222.188 |
| 2 | 3 | 294 | 22 | 0.00 | 10.00 | -14.06 |  |  |  | 224 | 37 | 19.43 | 123.714 |
| 3 | 2 | 0 | 0 | 0.00 | 10.00 | -1.60 | 44 | 37 | 21.03 | 44 | 37 | 19.43 | 123.714 |
| 3 | 4 | 134 | 4 | 55.00 | 10.00 | -0.30 |  |  |  | 178 | 42 | 15.73 | 117.574 |
| 3 | 6 | 245 | 40 | 45.00 | 10.00 | 1.90 |  |  |  | 290 | 18 | 7.93 | 146.050 |
| 4 | 2 | 0 | 0 | 0.00 | 10.00 | 23.77 | 22 | 16 | 27.25 | 22 | 16 | 51.02 | 222.188 |
| 4 | 5 | 254 | 33 | 25.00 | 10.00 | -17.25 |  |  |  | 276 | 49 | 35.00 | 148.453 |
| 4 | 3 | 336 | 25 | 55.00 | 10.00 | -6.52 |  |  |  | 358 | 42 | 15.73 | 117.574 |
| 5 | 4 | 0 | 0 | 0.00 | 10.00 | 3.53 | 96 | 49 | 31.47 | 96 | 49 | 35.00 | 148.453 |
| 5 | 6 | 266 | 7 | 40.00 | 10.00 | -3.53 |  |  |  | 2 | 57 | 7.93 | 150.774 |
| 6 | 5 | 0 | 0 | 0.00 | 10.00 | 4.89 | 182 | 57 | 3.04 | 182 | 57 | 7.93 | 150.774 |
| 6 | 1 | 176 | 49 | 15.00 | 10.00 | 0.22 |  |  |  | 359 | 46 | 18.27 | 120.174 |
| 6 | 3 | 287 | 21 | 10.00 | 10.00 | -5.11 |  |  |  | 110 | 18 | 7.93 | 146.050 |

Observed Distances:

| station |  | observationmetres | st. devmetres | resid <br> metres | plane brg |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| at | to |  |  |  | deg | min | ¢ sec | plane dist |
| 1 | 2 | 239.150 | 0.010 | -0.005 | 110 | 15 | 20.00 | 239.145 |
| 1 | 6 | 120.140 | 0.010 | 0.034 | 179 | 46 | 18.27 | 120.174 |
| 3 | 2 | 123.760 | 0.010 | -0.046 | 44 | 37 | 19.43 | 123.714 |
| 3 | 4 | 117.570 | 0.010 | 0.004 | 178 | 42 | 15.73 | 117.574 |
| 3 | 6 | 146.085 | 0.010 | -0.035 | 290 | 18 | 7.93 | 146.050 |
| 4 | 2 | 222.190 | 0.010 | -0.002 | 22 | 16 | 51.02 | 222.188 |
| 5 | 4 | 148.420 | 0.010 | 0.033 | 96 | 49 | 35.00 | 148.453 |
| 5 | 6 | 150.760 | 0.010 | 0.014 | 2 | 57 | 7.93 | 150.774 |

Constrained Bearings:

$$
35.000
$$

Constrained Distances:

| station |  | distance |
| :---: | :---: | :---: |
| at | to | metres |
| 3 | 6 | 146.050 |

Constrained Angles:
at stations left right deg min sec

Standard Deviations and Standard Error Ellipse:

| Serial | East | North | St. Devs |  | Standard Error Ellipse semi- semi- bearing |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | E | N | major | minor | d | m | S |
| 2 | 724.356 | 417.206 | 0.016 | 0.006 | 0.017 | 0.000 | 110 | 15 | 20 |
| 3 | 637.455 | 329.152 | 0.015 | 0.015 | 0.015 | 0.015 | 7 | 36 | 8 |
| 4 | 640.114 | 211.607 | 0.021 | 0.019 | 0.022 | 0.017 | 124 | 59 | 58 |
| 5 | 492.713 | 229.253 | 0.021 | 0.019 | 0.022 | 0.018 | 119 | 50 | 7 |
| 6 | 500.479 | 379.827 | 0.013 | 0.018 | 0.018 | 0.012 | 161 | 40 | 14 |

Adjusted Bearings and Distances:

|  | plane |  | plane |  |
| :---: | :---: | :---: | :---: | :---: |
| station | bearing | st.dev | distance | st.dev |
| at $\quad$ to deg min sec | sec | m | m |  |


| 1 | 2 | 110 | 15 | 20.00 | 0.00 | 239.145 | 0.017 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6 | 179 | 46 | 18.27 | 22.56 | 120.174 | 0.018 |
| 2 | 1 | 290 | 15 | 20.00 | 0.00 | 239.145 | 0.017 |
| 2 | 4 | 202 | 16 | 51.02 | 19.53 | 222.188 | 0.018 |
| 2 | 3 | 224 | 37 | 19.43 | 21.25 | 123.714 | 0.016 |
| 3 | 2 | 44 | 37 | 19.43 | 21.25 | 123.714 | 0.016 |
| 3 | 4 | 178 | 42 | 15.73 | 21.28 | 117.574 | 0.016 |
| 3 | 6 | 290 | 18 | 7.93 | 17.27 | 146.050 | 0.000 |
| 4 | 2 | 22 | 16 | 51.02 | 19.53 | 222.188 | 0.018 |
| 4 | 5 | 276 | 49 | 35.00 | 0.00 | 148.453 | 0.013 |
| 4 | 3 | 358 | 42 | 15.73 | 21.28 | 117.574 | 0.016 |
| 5 | 4 | 96 | 49 | 35.00 | 0.00 | 148.453 | 0.013 |
| 5 | 6 | 2 | 57 | 7.93 | 17.27 | 150.774 | 0.017 |
| 6 | 5 | 182 | 57 | 7.93 | 17.27 | 150.774 | 0.017 |
| 6 | 1 | 359 | 46 | 18.27 | 22.56 | 120.174 | 0.018 |
| 6 | 3 | 110 | 18 | 7.93 | 17.27 | 146.050 | 0.000 |
| 1 | 2 | 110 | 15 | 20.00 | 0.00 | 239.145 | 0.017 |
| 1 | 6 | 179 | 46 | 18.27 | 22.56 | 120.174 | 0.018 |
| 3 | 2 | 44 | 37 | 19.43 | 21.25 | 123.714 | 0.016 |
| 3 | 4 | 178 | 42 | 15.73 | 21.28 | 117.574 | 0.016 |
| 3 | 6 | 290 | 18 | 7.93 | 17.27 | 146.050 | 0.000 |
| 4 | 2 | 22 | 16 | 51.02 | 19.53 | 222.188 | 0.018 |
| 5 | 4 | 96 | 49 | 35.00 | 0.00 | 148.453 | 0.013 |
| 5 | 6 | 2 | 57 | 7.93 | 17.27 | 150.774 | 0.017 |

[^2]```
Cofactor matrix Qxx (upper triangular portion)
Units of metre squared, printed in same order as adjusted stations.
The * symbol indicates new row of cofactor matrix beginning at
diagonal element, east variance followed by covariances
then north variance followed by covariances.
* 3.6381e-005 -1.3426e-005 1.8552e-005 -1.3627e-005 1.8367e-005 -1.4420e-005
    2.1449e-005 -1.4789e-005 1.7156e-005 -1.7400e-005
* 4.9545e-006-6.8462e-006 5.0287e-006 -6.7780e-006 5. 3213e-006 -7.9153e-006
    5.4575e-006-6.3311e-006 6.4210e-006
* 3.3970e-005 1.6930e-007 3.8229e-005 -7.2631e-006 4.4761e-005 -8.0451e-006
    2.8677e-005 -1.4138e-005
* 3.5216e-005 -3.9278e-006 2.5148e-005 2.3953e-006 2.4391e-005 -1.1449e-006
    3.1664e-005
* 6.4783e-005 -1.4217e-005 5.3712e-005 -1.2892e-005 3.0702e-005 -2.4272e-005
* 5.4433e-005-9.7877e-006 5.3903e-005 -5.3716e-006 3.0261e-005
* 6.7042e-005-1.1383e-005 3.3908e-005 -2.6938e-005
* 5.3723e-005-5.7554e-006 3.0580e-005
* 2.6095e-005 -8.1228e-006
* 4.7923e-005
Adjustment Data:
    1 fixed stations
    5 floating stations
16 observed directions
    8 observed distances
    2 constrained bearings
    1 constrained distances
    1 constrained angles
    6 orientation constants
degrees of freedom = observations
    - unknowns
    + constraints
    = 12
2 \text { iterations required for solution}
```




[^0]:    ${ }^{1}$ Matlab is an interactive, matrix-based system for scientific and engineering computation and visualisation. The name MATLAB is derived for MATrix LABoratory and is licensed by The MathWorks, Inc.
    ${ }^{2}$ Deakin, R.E., 1991, 'A review of least squares theory applied to traverse adjustment', The Australian Surveyor, Vol. 36, No. 3, September 1991, pp. 245-53 and Vol. 36, No. 4, December 1991, pp. 281-90

[^1]:    ${ }^{3}$ ASCII is an acronym for American Standard Code for Information Interchange. ASCII codes represent alphabetic and numeric characters.

[^2]:    Variance Factor $=6.6353 e+000$

